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ABSTRACT

Context. EUHFORIA is a space weather forecasting tool used to predict the time of arrival and geo-effectiveness of coronal mass
ejections (CMEs). In this simulation model, magnetic structures evolve in the heliosphere after their injection into the domain at
0.1 AU. The predictions provided by EUHFORIA are directly related to the geometric, thermodynamic, and magnetic properties of
the injected CME models.
Aims. The aim of this paper is to present the implementation of two new CME models in EUHFORIA. Both models possess a toroidal
geometry, but the internal distribution of the magnetic field is different.
Methods. We introduce the two toroidal CME models analytically, along with their numerical implementation in EUHFORIA. One
model is based on the modified Miller-Turner (mMT) solution, while the other is derived from the Soloviev equilibrium, a specific
solution of the Grad-Shafranov equation. The magnetic field distribution in both models is provided in analytic formulae, enabling a
swift numerical computation. After detailing the differences between the two models, we present a collection of thermodynamic and
magnetic profiles obtained at Earth using these CME solutions in EUHFORIA with a realistic solar wind background. Subsequently,
we explore the influence of their initial parameters on the time profiles at L1. In particular, we examine the impact of the initial density,
magnetic field strength, velocity, and minor radius.
Results. The Soloviev model allows control over the shape of the poloidal cross section, as well as the initial twist. In EUHFORIA, we
obtained different thermodynamic and magnetic profiles depending on the CME model used. The generated magnetic profiles reflect
the initial magnetic field distribution of the chosen model. We found that changing the initial parameters affects both the amplitude and
the trend of the time profiles. For example, using a high initial speed results in a fast evolving and compressed magnetic structure. The
speed of the CME is also linked to the strength of the initial magnetic field due to the contribution of the Lorentz force on the CME
expansion. However, increasing the initial magnetic field also increases the computation time. Finally, the expansion and integrity of
the magnetic structure can be controlled via the initial density of the CME.
Conclusions. Both toroidal CME models are successfully implemented in EUHFORIA and can be utilized to predict the geo-
effectiveness of the impact of real CME events. Moreover, the current implementation could be easily modified to model other
toroidal magnetic configurations.

Key words. Sun: coronal mass ejections (CMEs) - solar wind - Sun: magnetic fields - Methods: numerical - Magnetohydrodynamics
(MHD)

1. Introduction

In the solar corona, rapid changes in the magnetic configuration
can lead to the release of substantial quantities of magnetic en-
ergy, a phenomenon known as a solar flare (Forbes et al. 2006;
Schmieder et al. 2007). In some cases, flares can also be accom-
panied by plasma ejections, e.g. filaments, jets (Schmieder et al.
1997, 2013). We refer to these as eruptive flares (as opposed
to confined flares) (Zuccarello et al. 2017). If the ejected struc-
ture extends spatially and is subsequently observed in the high
corona in white light using a coronagraph, it defines a Coronal
Mass Ejection (CME). These spectacular phenomena can impact

Earth’s magnetic environment and human technologies (Both-
mer & Daglis 2007). Among other effects, satellite communica-
tions can be disrupted, GPS signals can be lost due to electronic
variations in the ionosphere, and geomagnetically induced cur-
rents can damage the power grid and affect the erosion of oil
pipelines.

The geoeffectiveness of a solar transient depends on its hy-
drodynamic and magnetic properties (Dumbović et al. 2015).
Signatures of Interplanetary Coronal Mass Ejections (ICMEs)
can be measured by different spacecraft such as ACE (Smith
et al. 1998), the Parker Solar Probe (Fox et al. 2016), STEREO
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A and B (Kaiser & Adams 2007), the Solar Orbiter (Müller
et al. 2020), Helios (Roberts et al. 1987), and Wind (Bougeret
et al. 1995). For some events, in situ measurements reveal an in-
terplanetary shock of the ICMEs, followed by a heated region
called the sheath as a result of the accumulation of matter up-
stream of the expansion of the magnetic ejecta (ME; Kaymaz &
Siscoe 2006). The ME, characterized by a strong magnetic sig-
nature and low temperature, is the direct signature of the twisted
structures ejected from the solar corona. This structure is usually
described as a flux rope (Démoulin et al. 2008). While interplan-
etary shocks alone can trigger magnetic disturbances on Earth,
the strongest geomagnetic storms occur when the Bz component
of the magnetic field of the ME, i.e. the component of the mag-
netic field perpendicular to the equatorial surface, has a direc-
tion opposite to that of the magnetopause (Lugaz et al. 2016).
Such a configuration allows for reconnection between the mag-
netic field lines of the two magnetic structures, which leads to an
energy transfer towards the inner regions of the magnetosphere
(Akasofu 1981; Dungey 1961).

ICMEs present complex signatures that reflect their interac-
tion with the solar wind during their propagation in the helio-
sphere (Scolini et al. 2022). For example, using a 2.5D MHD
simulation, (Zuccarello et al. 2011) found that the CME can be
deflected toward the current sheet of a large streamer due to a
discrepancy in the magnetic pressure and tension forces. Re-
cently, Asvestari et al. (2022) found that the CME tilt evolves,
depending on the strength and orientation of the ambient mag-
netic field. Interactions with the surrounding field can also lead
to rotation of the CME (e.g., Liu et al. 2018; Manchester et al.
2017; Shiota et al. 2010). It should also be noted that the ther-
modynamic and magnetic properties of successive CMEs are di-
rectly affected by their interactions with each other (Scolini et al.
2020; Koehn et al. 2022).

Although multiple viewpoint reconstruction techniques are
beginning to reconstruct the complex geometric and magnetic
structure of a CME from the current set of observations (e.g.,
Rodari et al. 2018), the current limited number of satellites does
not enable us to fully determine all the properties of ICMEs dur-
ing their propagation (Démoulin 2010). Therefore, in addition to
observations, a set of numerical codes has been developed with
the aim of tracking the evolution of CMEs in the heliosphere.
In a space weather context, their use is particularly relevant for
attempting to predict the geoeffectiveness of a CME before it
reaches Earth. Examples of such 3D magnetohydrodynamics
(MHD) simulations include ENLIL (Odstrcil 2003), EUHFO-
RIA (Pomoell & Poedts 2018), MS-FLUKSS (Singh et al. 2018),
SUSANOO-CME (Shiota & Kataoka 2016), and ICARUS (Ver-
beke et al. 2022; Baratashvili et al. 2022), where the latter uses
the versatile MPI-AMRVAC framework (Keppens et al. 2023)
as its MHD solver, enabling radial grid stretching and solution
adaptive mesh refinement. In these various simulation models,
one or more CMEs propagate through a realistic background so-
lar wind after their injection at the inner boundary of the domain
(usually located at 0.1 AU). The predictions are obtained by ex-
tracting the temporal evolution of the plasma quantities (veloc-
ity, pressure, density, magnetic field, etc.) at different points in
the heliosphere. The obtained time profiles depend, especially at
L1/Earth, on the inserted CME model and its magnetic and ther-
modynamic properties (density, speed, magnetic flux, etc.). The
characteristics of the injected CME can be deduced from remote
sensing observations (e.g., Scolini et al. 2019; Maharana et al.
2022).

In this work, we are particularly interested in the 3D time-
dependent magnetohydrodynamic (MHD) model of heliospheric

wind and CME evolution, EUHFORIA (European Heliospheric
Forecasting Information Asset Pomoell & Poedts 2018). Before
this study, three CME models, each with its own capabilities and
limitations, were implemented in the framework of EUHFORIA.
The simplest is the cone model, which represents an unmagne-
tized plasma with a self-similar expansion (Xie et al. 2004). In
EUHFORIA in combination with an energetic particle accelera-
tion and transport model called PARADISE, the cone model can
be used to model the interplanetary acceleration of low-energy
protons during an energetic storm particle (ESP) event (Wijsen
et al. 2022). However, this CME model is obviously not suitable
for studying the evolution of the internal magnetic signature of
an ICME. The second model implemented in EUHFORIA is the
spheromak model, representing a CME with a global spherical
shape but with an initially linear force-free magnetic field (Chan-
drasekhar & Kendall 1957; Verbeke et al. 2019). Although the
use of this magnetized CME model is widespread (e.g., Verbeke
et al. 2019; Scolini et al. 2019; Asvestari et al. 2022; Verbeke
et al. 2022), as a result of its spherical geometry lacking CME
legs, the spheromak model does not adequately model scenarios
where Earth is impacted by the flanks/legs of ICMEs. To address
this limitation, Maharana et al. (2022) implemented in EUHFO-
RIA a flux rope model in which the CME has an extended flux-
rope geometry including CME legs (e.g., "Flux Rope in 3D", or
FRi3D; Isavnin 2016). Its geometry is much closer to observa-
tions where CMEs are often observed to possess crescent-shaped
shapes (Janvier et al. 2013). However, solving the complex equa-
tions defining the magnetic distribution of the model requires a
substantial amount of computing time, which limits the use of
this model in an operational space weather context.

In this study, we introduce the implementation of two new
CME models with toroidal geometry in EUHFORIA, with the
aim of overcoming the shortcomings of the current CME mod-
els. The toroidal geometry of the new CME models is simpler
than that of the realistic FRi3D model. However, unlike the latter,
we suggest that the torus models are better suited for operational
space weather forecasting. Indeed, their magnetic and geomet-
ric configurations are based on straightforward analytical for-
mulations. Consequently, they can be applied as time-dependent
boundary conditions at 0.1 AU, making them much more time-
efficient than the numerically determined FRi3D model.

On the other hand, although the new models do not remain
connected to the Sun after injection, just like the spheromak
model, they possess a geometry that is more consistent with the
observations than the spheromak. Indeed, the toroidal models
have a curved front and two ’legs’, in contrast to the spheromak.
Additionally, one of our models is based on a particular solu-
tion of the Grad-Shafranov equation. This equation is frequently
employed to determine the cross-section of observed magnetic
clouds (Möstl et al. 2009; Isavnin et al. 2011). Hence, we an-
ticipate simulations with the new toroidal CME models would
closely resemble the cross-sections of the observed ones. Fur-
thermore, in this particular model, it is possible to adjust the ra-
tio of the poloidal and toroidal fluxes. This feature is absent in
other models and provides an added degree of freedom to more
accurately predict the magnetic profiles observed at Earth.

Lastly, while both the CME models introduced here exhibit
a toroidal geometry, they differ in the distribution of the inter-
nal magnetic field. This means we can expect varying magnetic
field profiles in EUHFORIA, underscoring the rationale for im-
plementing both models. It is important to note that this work
focuses on validating the numerical implementation of these two
models. In particular, we examine how the models’ distinct free
parameters impact the time profiles recorded at Earth (extracted
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Fig. 1: Local toroidal curved cylindrical coordinates associated
with the Miller-Turner CME model. In the local Cartesian sys-
tem centered on Ol, the z-axis coincides with the symmetry axis
of the torus.

from the 3D time-dependent simulations). While addressing all
potential configurations is not feasible, our research seeks to
broadly demonstrate the potential of these two new models in
EUHFORIA. A subsequent study will be devoted to directly
comparing them with the FRi3D and spheromak models to high-
light the strengths and weaknesses of all numerical CME mod-
els.

The paper is organized as follows: Section 2 introduces the
two new torus CME models : one with the modified Miller-
Turner solution (Vandas & Romashets 2015), and the other
with the Soloviev solution (an analytical solution of the Grad-
Shafranov equation; Soloviev 1975). In Section 3, we provide
details on the implementation of the new models in the frame-
work of EUHFORIA. The resulting thermodynamic and mag-
netic field profiles associated with the CME models in the helio-
sphere are discussed in Section 4. In this section, the influence
of various free parameters of the CME models is also investi-
gated. We specifically discuss the impact of initial radial speed
(cf. Sect. 4.3), magnetic field strength (cf. Sect. 4.4), density (cf.
Sect. 4.5), as well as minor radius (cf. Sect. 4.6). To conclude,
Section 5 summarizes the main findings and potential implica-
tions for future research.

2. CME models

We implement in EUHFORIA two different CME models. In
this section, we provide an overview of the two CME models:
(1) the modified Miller-Turner solution (Vandas & Romashets
2015), and (2) the Soloviev solution, an analytical solution of
the Grad-Shafranov equation (Soloviev 1975).

2.1. The Modified Miller-Turner solution

The magnetic configuration of this model was originally derived
by Miller & Turner (1981) and represents a constant-α force-free

field in a toroidal geometry given by:

Bρl =
B0

2αMT R0
J0(ρlαMT ) sin θl , (1)

Bϕl = B0

(
1 −

ρl

2R0
cos θl

)
J0(ρlαMT ) , (2)

Bθl = B0
cos θl

2αMT R0
J0(ρlαMT )

−B0

(
1 −

ρl cos θl

2R0

)
J1(ρlαMT ) , (3)

where (ρl, ϕl, θl) are the local toroidal curved cylindrical coordi-
nates, a the minor radius of the torus, R0 the major radius and B0
the strength of the toroidal component in the center of the torus
(cf. Fig. 1). J0 and J1 are the Bessel functions of the first kind
of order 0 and 1, respectively. The local angles ϕl and θl range
from 0 to 2π, while ρl covers the interval [0, a]. Hence, this CME
model has a fixed circular poloidal cross-section unlike the other
implemented model which contains parameters that determine
the shape of the poloidal cross-section (cf. Sect. 2.2). To ensure
that the magnetic field is completely poloidal (i.e., Bϕl = 0) at
the boundary of the flux rope and that the magnetic field line is
confined in the torus, the value αMT is such that aαMT is the first
root of J0(ρlαMT ) :

αMT ≈ Cα
2.41

a
, (4)

where Cα is defined as the chirality of the magnetic field and
takes value +1 (−1) for right (left) handedness. The Miller-
Turner solution tends to the Lundquist solution (Lundquist 1951)
when R0 → ∞.

This solution has one main disadvantage: the solenoidal con-
dition∇·B = 0 is not exactly fulfilled, but only approximately. To
mitigate the effect of the non-solenoidal scenario, in this work,
we use a modified Miller-Turner (mMT) solution defined by Ro-
mashets & Vandas (2003) such that:

B = ∇ ×
BMT

αMT
, (5)

where BMT is the original Miller-Turner solution (cf. Eqs 1- 3).
The new magnetic field can be expressed as :

Bρl = B0
R0 − 2ρl cos θl

2αMT R0(R0 + ρl cos θl)
J0(ρlαMT ) sin θl , (6)

Bϕl = B0

(
1 −

ρl

2R0
cos θl

)
J0(ρlαMT ) , (7)

Bθl = B0
R0 − 2ρl cos θl

2αMT R0(R0 + ρl cos θl)
J0(ρlαMT ) cos θl

−B0

(
1 −

ρl

2R0
cos θl

)
J1(ρlαMT ) . (8)

In the mMT configuration, the magnetic field is fully divergence-
free and the degree of twisting varies from zero at the center to
an infinite value at the outer boundary.

In Fig. 2, the top panels shows the magnetic field distribution
in the mTM solution. In this figure, the center of the torus is at
the origin (0, 0, 0) of the local coordinate system, assuming that
the rotation axis aligns with the z-axis. The major radius, R0, is
equal to 10 R⊙, while the minor radius is a = 4 R⊙. The mag-
netic field in the circular cross-section has a maximum shift to-
ward the torus hole. According to Vandas & Romashets (2015),
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Fig. 2: The normalized magnetic field strength in the two CME
models implemented in EUHFORIA. The left panels show a
sample of magnetic field lines in a torus with a minor radius
a = 4 R⊙ and a major radius R0 = 10 R⊙. The right pan-
els show the dimensionless magnetic field strength B/B0 in a
poloidal cross-section. The "+" markers indicate the center of
the torus. From top to bottom: magnetic field configuration in
the modified Miller-Turner model, in the Soloviev model with
αS = 1 and with αS = 10. When the αS parameter is too high,
the magnetic field is mainly toroidal.

the shift increases when the aspect ratio, R0/a, decreases. In the-
ory, the magnetic field is fully force-free only for large aspect
ratios (R0/a ≫ 1). However, Vandas & Romashets (2015) found
that the force-free condition in the original Miller-Turner solu-
tion (cf. Eqs. 1-3) is held much better than in the mMT model for
low aspect ratios (≈ 2). In this study, we have chosen the mMT
solution, which is unique in being completely divergence-free,
thus avoiding numerical instability and unphysical solutions. It is
worth noting that there is also the Tsuji solution, which describes
a magnetic configuration in the same toroidal geometry but is
force-free for all aspect ratios (Tsuji 1991). That being said, the
expressions for its magnetic field components contain infinite
series expansions and the coordinate system transformations re-
quired for the implementation in EUHFORIA are too complex
for a straightforward and quick numerical implementation.

2.2. The Soloviev solution

2.2.1. Analytical formulation

The second CME model originally corresponds to a global mag-
netic confinement topology in a tokamak configuration (Goed-
bloed 1984). This configuration can be described by a particu-
lar cylindrical system with R representing the distance from the
center to the symmetry axis, Z the vertical coordinate, and ϕ the
toroidal angle (cf. Fig. 3). Considering we assume axisymme-
try along ϕ, and that the static equilibrium solution satisfies the

Fig. 3: Particular cylindrical system associated with the Soloviev
solution. The color lines are flux isocontours such as ψ = 1 (in
red), ψ = 0.7 (in green) and ψ = 0.2 (in blue).

following MHD equations

J × B = ∇p, J = ∇ × B, and ∇ · B = 0 , (9)

we find that all solutions are described by the non-linear Grad-
Shafranov equation

∆Ψ −
1
R
∂Ψ

∂R
= R

∂

∂R

(
1
R
∂Ψ

∂R

)
+
∂2Ψ

∂Z2 = −II′ − R2 p′. (10)

Here,Ψ is the poloidal flux, which ranges from 0 on the magnetic
axis to Ψ1 on the plasma boundary. The Grad-Shafranov equa-
tion, Eq. 10, depends on two arbitrary flux functions: the stream
function I(Ψ) of the poloidal current and the pressure p(Ψ) (cf.
Section 16.2 Goedbloed et al. 2019, for the derivation).

The magnetic configuration used in our work is obtained
from an exact analytical solution of the Grad-Shafranov equa-
tion, called the Soloviev equilibrium. This particular solution im-
poses linear profiles for I2 and p(Ψ) (i.e., for the case when the
right-hand side of Eq. 10 is a constant). The dimensionless flux
ψ = Ψ/Ψ1 is then given by:

ψ =

[
X −

1
2
ϵ(1 − X2)

]2

+

(
1 −

ϵ2

4

)[
1 + ϵτX(2 + ϵX)

](
Y
σ

)2

, (11)

which depends on the dimensionless poloidal coordinates

X =
R − R0

a
, and (12)

Y =
Z
a
, (13)

as well as the inverse aspect ratio ϵ = a/R0 (≪ 1 in asymptotic
expansions), the triangularity τ, and the elongation (or elliptic-
ity) σ. Using the dimensionless quantity ψ, the boundary condi-
tion becomes ψ(X,Y) = 1 on the outer boundary of the plasma
cross-section.

2.2.2. Geometry

In the Miller-Turner model, the poloidal cross section is circular
(cf. the top panels, Fig. 2). However, it is possible to change
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Fig. 4: Isocontours of ψ = 1 in the X − Z plane for the Soloviev
solution with different geometries. The upper panel illustrates
the impact of the triangularity parameter τ on the isocontour
ψ = 1, while the lower panel, characterizes the influence of
the elongation parameter σ for a torus with a = 1 R⊙ and
R0 = 2.5 R⊙, centered at (0,0,0). The marker "+" indicates the
center of the torus, while the dot marker corresponds to x = R0.
In the top panel, σ is kept constant at 1.4 and in the bottom plot,
τ is constrained to 0.

the shape of the poloidal cross-section in the Soloviev solution
by varying the triangularity τ and the elongation σ parameters.
Figure 4 shows the isocontour ψ = 1 in the Soloviev model as a
function of triangularity and elongation.

The shape of the flux contour can also be modified by chang-
ing the triangularity τ (cf. Fig. 4, top panel). The triangularity
parameter allows one to pass from an elliptic flux contour when
τ = 1 (and σ > 1) to a triangular flux contour whose direction
depends on the sign of the triangularity (cf. Fig. 4, top panel).
For τ = −0.5 and τ = 1 (cf. Fig. 4, top panel), the isocontour
ψ = 1 is closed and delineates the limits of the torus. However,
the flux contour is open for τ = −2 and τ = 2.5, which means
that the torus is not properly delineated. Analytically, this flux
contour shape reflects the presence of hyperbolic points located
at :

xs = −
1
ϵ

[
1 −

1
τ

]
, (14)

ys = ±
σ

ϵτ

√
1
2

1 + ϵ2τ

1 − ϵ2

4

, (15)

that are present in the domain if τ < −1/[ϵ(2 + ϵ)] or τ >
1/[ϵ(2 − ϵ)]. To obtain a closed flux contour, the value of τ must
be restricted within these limits. For example, with an inverse
aspect ratio of 0.4 as in Fig. 4, the triangularity must lie within
the range [−1.04, 1.56] to obtain a closed contour. The values −2
and 2.5, being outside this range, result in an open isocontour for
ψ = 1 in both cases, as shown in Fig. 4.

The elongation σ does not change the size in the toroidal
plane of the torus, but affects the cross-sectional shape of the
torus along the Z-direction, as shown in Fig. 4. Indeed, the outer
isocontour moves from a near-circular cross section when σ = 1
to an ellipsoidal cross section when σ > 1 (cf. Fig. 4, bottom
panel). The maximum height reached in the Z-direction is σa.
For further information on the geometry of the torus, we refer to
Goedbloed (1984).

2.2.3. Magnetic field configuration

Using the analytical solution for the flux (cf. Eq. 11), the mag-
netic field components in the particular cylindrical system can
be determined such as :

BR = −
B0

αS

ϵ

1 + ϵX
∂ψ

∂Y
, (16)

BZ =
B0

αS

ϵ

1 + ϵX
∂ψ

∂X
, (17)

Bϕ =
B0

1 + ϵX

1 − 2
ϵψ

α2
S

(
Aϵ −

B
2

)1/2

, (18)

where,

A = 2

1 + 1 − ϵ2

4

σ2

 , (19)

B = 4ϵ

1 + 1 − ϵ2

4

σ2 τ

 , (20)

and

∂ψ

∂X
= [X− (1−X2)](1+ ϵX)+

(
1−

ϵ2

4

)
[2ϵτ(1+ ϵX)]

(
Y2

σ2

)
, (21)

while

∂ψ

∂Y
=

[
1 −

ϵ2

4

]
[1 + ϵτX(2 + ϵX)]

(
2Y
σ2

)
, (22)

and αS is related to the inverse of the total poloidal flux through
the plasma and defined as

αS =
a2B0

Ψ1
. (23)

Here, B0 is a constant magnetic field strength used to scale the
different magnetic field components (cf. Eqs. 16, 17, and 18).

Contrary to the modified Miller-Turner CME model (cf.
Sect. 2.1), the Soloviev model allows for varied magnetic field
distributions for the same poloidal flux Ψ1, depending on the
value of the parameter αS . In the Miller-Turner CME model,
the magnetic helicity, which signifies the winding of magnetic
field lines relative to one another, is a constant parameter. How-
ever, the Soloviev solution introduces flexibility in setting helic-
ity by adjusting the parameter αS (cf. Eq. 23). Indeed, the local
magnetic fields BR and BZ (cf. Eqs. 16 and 17, respectively) ex-
hibit variations proportional to 1/αS , while the poloidal field Bϕ
presents a more intricate dependence (cf. Eq. 18). As a result,
the adjustment of αS modifies the ratio between the toroidal and
poloidal fields.

To visualize this, Fig. 2 displays the magnetic field distri-
bution in both the mMT solution and the Soloviev model with
αS = 1 and αS = 10. A distinct variance can be observed in the
distribution of magnetic field lines within the Soloviev model
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between the αS = 1 and αS = 10 cases. In the latter scenario, the
high αS value leads to the dominance of the magnetic field Bϕ
resulting in an almost purely toroidal magnetic field. It is worth
noting that, in a tokamak configuration, when the toroidal mag-
netic field varies as Bϕ = I(Ψ)/R, this component is always dom-
inant (Goedbloed 1984).

Moreover, the different magnetic helicities within the
Soloviev and mMT models indicate their distinct magnetic field
distributions. As seen in the right panels in Fig. 2, the isocon-
tours of constant B in the mMT model are circular, while in
the Soloviev model they appear as near-vertical bands. It is also
worth noting that the maximum of magnetic field is not located
at the center, but rather at the boundary in the Soloviev model,
which is not usually the case in the magnetic configurations pop-
ularly used to model CMEs (Lundquist 1951; Chandrasekhar &
Kendall 1957). Given these disparities in magnetic field distri-
butions between the Soloviev and the mMT models, we aim to
validate the implementation of both models in EUHFORIA and
investigate the differences in their profiles in the heliosphere.

3. Numerical implementation of Miller Turner CME
in EUHFORIA

3.1. EUHFORIA

The two magnetic configurations used are implemented as CME
models in the physics-based 3D magnetohydrodynamic simula-
tion of the heliosphere wind and CME evolution, EUHFORIA
(European Heliospheric Forecasting Information Asset Pomoell
& Poedts 2018). For space weather operational purposes, EU-
HFORIA can be used to track the propagation of one or more
CMEs in the heliosphere and predict the temporal evolution of
different plasma quantities (e.g. density, velocity, magnetic field)
at different positions in the inner heliosphere.

EUHFORIA is divided into two main parts. The first one is
the semi-empirical Wang–Sheeley–Arge model (WSA McGre-
gor et al. 2011; van der Holst et al. 2010) that inputs a syn-
optic magnetogram to provide the plasma quantities at 0.1 AU
needed to establish the background solar wind in the heliosphere.
The magnetogram can come from different sources, for example
from the Global Oscillation Network Group (GONG; Harvey
et al. 1996) or from the SDO’s Helioseismic and Magnetic Im-
ager (HMI; Schou et al. 2012). In this coronal part, the 3D coro-
nal magnetic field is first computed from a Potential Field Source
Surface (PFSS) extrapolation (Altschuler & Newkirk 1969). The
magnetic field is then extended to 0.1 AU using the Schatten Cur-
rent Sheet model (Schatten et al. 1969). The solar wind speed
at the 0.1 AU boundary is obtained as a function of the flux
tube expansion factor, f , and the distance, d, of the foot point
of the flux tube to the nearest coronal hole. From this solar wind
speed vsw = v( f , d), the density and the temperature at the outer
boundary are computed using empirical relations (cf. Pomoell &
Poedts 2018, for more details).

The second part of EUHFORIA is a 3D time-dependent mag-
netohydrodynamic simulation of the heliosphere. The thermo-
dynamic and magnetic quantities, computed from the coronal
model, are self-consistently determined between 0.1 AU and
2 AU in an MHD relaxation phase in a uniform grid. This evo-
lution is determined by solving the set of ideal MHD equations
with a polytropic index equal to 1.5, using a finite volume nu-
merical architecture and a constrained transport scheme ensuring
that the solenoidal condition is always satisfied up to machine
accuracy.

Fig. 5: Relation between the global Cartesian coordinate system
of EUHFORIA (X,Y,Z), and the local Cartesian system in which
the two CME models are defined (Xl,Yl,Zl). The distance from
the center td, the colatitude θi, and the longitude ϕi define the
initial position of the center of the torus, Ol. The vector OOl,
where O is the center of the domain, corresponds to the Xl axis
of the local Cartesian coordinate system.

EUHFORIA can be used to track the propagation of a CME
and its possible interaction with the background solar wind by
injecting a CME model at the inner boundary as described in the
following section (cf. Sect. 3.2).

3.2. CME implementation

The CME injection in EUHFORIA takes place at the inner
boundary of the heliospheric model, i.e. at 0.1 AU. Starting from
a predetermined initiation time, at each time step increment a
mask is computed to identify the points on the grid where the in-
jected CME intersects the spherical boundary surface at 0.1 AU.
At all these points, the solar wind speed, magnetic field, density,
and temperature are substituted with those of the CME. In the
subsequent time step, the CME center is advanced with the ini-
tially defined purely radial speed, vr0, and the 3D mask region is
updated as the solution moves through the spherical boundary.

Initially, the center Ol of the torus is located at the position
(td, θi, ϕi) in spherical coordinates, where td is the distance from
the center of the domain O (0,0,0), θi is the initial colatitude and
ϕi is the longitude (cf. Fig. 5). These three coordinates are free
parameters of the models and must be set prior to the simulation.

At the intersection point, the components of the solar wind
magnetic field that are replaced are in global spherical coordi-
nates (R, θ, ϕ). The equivalent global Cartesian system is (X, Y ,
Z) centered at O. Hence, it is necessary to transform the mag-
netic field computed according to Eqs. 6-8 or 16-18 in a local
toroidal coordinate system centered at Ol into magnetic fields
(BR, Bθ, Bϕ) in the global spherical system centered at O. The
specifics of the base change are explained in Appendix A.

Different criteria are used to determine the intersection
points for the Soloviev and the mMT models. In the case of
the Soloviev solution, the flux ψ, is computed (cf. Eq. 11). All
points on the boundary where the flux is less than or equal to 1
are considered to be within the CME. As mentioned in Sect. 2.2,
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Variable Description Model Discussion
t0 Insertion time : date from which the torus is inserted into the domain Soloviev & mMT -
θi Initial colatitude of the center Soloviev & mMT -
ϕi Initial longitude of the center Soloviev & mMT -
a Minor radius of the torus Soloviev & mMT Sect. 4.6

R0 Major radius of the torus Soloviev & mMT Sect. 4.6
τ Triangularity Soloviev -
σ Elongation Soloviev -
ω Angle defining rotation along the local axis Xl Soloviev & mMT -
vr0 Initial radial speed of the center Soloviev & mMT Sect. 4.3
n CME density Soloviev & mMT Sect. 4.5
T CME Temperature Soloviev & mMT -
B0 Magnetic field strength Soloviev & mMT Sect. 4.4
αs Twist Soloviev Sect. 4.2.2
Cα Chirality mMT Sect. 4.2.2

Table 1: Summary of the different free parameters defining the geometry, the magnetic and the kinetic properties of the implemented
CMEs.

depending on the elongation, triangularity, and aspect ratio, the
shape of the isocontour ψ = 1 changes. In some cases, the iso-
contour is not closed (cf. Fig. 4). Numerically, this will lead to
the computation of a magnetic field that is not physical every-
where at the border. Therefore before using the Soloviev model,
it must be analytically checked whether condition ψ < 1 accu-
rately defines a closed contour with the desired geometric pa-
rameters (cf. Sect. 2.2.2).

For the Miller-Turner solution, the local toroidal radius ρl
(cf. Eq. A.1) is computed; all points on the boundary where this
radius is less than the minor radius of the torus are within the
CME. This approach cannot be used for the Soloviev solution, as
in that model the poloidal cross section is not (always) circular
(cf. Sect. 2.2).

In EUHFORIA, the two toroidal CME models are distin-
guished by their magnetic field configurations and the free ge-
ometrical parameters that define CME kinematics and kinetics.
The CME parameters for both models are summarized in Ta-
ble 1. In the following subsections, we will cover various param-
eters to highlight the differences between the two implemented
CME models and how they affect the EUHFORIA simulation
obtained at Earth. To limit the number of simulations, we will
not discuss the impact of the initial position (i.e., the angles θi
and ϕi) and the internal temperature of the CME (T ). We also
skip the triangularity and elongation parameters of the Soloviev
model as they only influence simulations with high resolution
and with large minor radius that enable clearly differentiating
between a circular and a "triangular" cross section.

4. Thermodynamic and magnetic profiles

4.1. Theoretical profiles

Before analyzing the thermodynamic and magnetic profiles ob-
tained in EUHFORIA, it is insightful to examine how the com-
ponents of the magnetic field evolve in the absence of solar wind.
Figure 6 shows the evolution of the components of the mag-
netic field (in the Geocentric Solar Ecliptic System, GSE) for the
two magnetic configurations at the level of three virtual satellites
crossed by a torus with a speed of 600 km/s. It is essential to note
that the magnetic field depends on the geometry of the torus, no-
tably through the aspect ratio: R0/a. However, Fig. 6 provides a
general idea of how the tilt of the torus and the in situ measure-
ment point influence the components of the obtained magnetic

fields. The minor and major radii of the torus are a = 5 R⊙ and
R = 10 R⊙. For the Soloviev solution, the elongation, σ, equals
1, the triangularity, σ, is 0.5 and the parameter αS also equals 1.
The center of the torus evolves in the X direction.

In the first row of Fig. 6, the torus crosses the three virtual
satellites without any tilt (ω = 0). When the virtual satellite is di-
rectly in the propagation path of the torus (i.e, the blue satellite
in Fig. 6) there are two sections corresponding to the front and
back of the torus, separated by the torus hole. The two parts have
the same size, and the distribution of the magnetic field inside
depends on the CME model. In both cases, the Bx component
is zero, and the Bz component is symmetric in the two sections,
with a profile change sign close to the center. However, the di-
rection of Bz variation is opposite between the two CME models.
Another difference is that the By component, anti-symmetric be-
tween the two magnetic structures, is maximum close to the torus
hole for the Soloviev solution, while it reaches its maximum at
the magnetic axis for the mMT solution.

If the virtual satellite is in the direction of propagation, it will
pass through the torus hole. However, it is also possible to obtain
a single magnetic structure by shifting a virtual satellite by an
angle, ϕ = 10◦, so that it does not pass through the torus hole (cf.
Fig. 6, third and last column). As before, the two CME models
have different magnetic field distributions, but a double change
in the sign of the Bz component is observed in both cases. A
change in sign is also observed for the By component. Moreover,
unlike the case where the virtual satellite is in the direction of
propagation, the Bx component is not null. It has a significant
influence and is even predominant near the structure’s middle in
the Soloviev solution (cf. the top-mid panel in Fig. 6). Also, it is
important to note that crossing either the right or left part of the
torus (relative to the torus hole) merely changes the sign of Bx in
both models.

Asvestari et al. (2022) found that the interaction of the CME
with the ambient field in EUHFORIA can modify the inherent
CME tilt even in the absence of actual CME rotation in the he-
liosphere. The middle and bottom rows of Fig. 6 show the mag-
netic field profiles in the two CME models obtained with a tilt,ω,
of 45◦ and −45◦, respectively. The first observation is that at the
three virtual satellites, there are two magnetic structures, indicat-
ing the passage of a part of the torus hole in all cases. However,
the profiles are completely different from those obtained at the
same location but without tilt. In particular, symmetry and anti-
symmetry is no longer observed for the magnetic field compo-
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Fig. 6: Theoretical profiles of magnetic field components are obtained by advancing a torus at a speed of 600 km/s through three
virtual satellites. The first column presents an isosurface ψ = 1 for the Soloviev solution, with three torus inclinations: ω = 0◦ (top
panel), ω = 45◦ (middle panel), and ω = −45◦ (bottom panel). The second column represents, for these three configurations, the
evolution of magnetic field components (in GSE) at the level of a virtual satellite (blue) placed directly in the direction of torus
propagation. The third column corresponds to the passage through the offset virtual satellite (orange) at an angle ϕ = 10◦ relative
to the propagation direction. The fourth column corresponds to the offset green satellite at an angle ϕ = −10◦. The dashed lines
correspond to the magnetic field components obtained from the Soloviev CME model, whereas the solid lines correspond to the
mMT solution.

nents between the two parts of the torus when the virtual satellite
is in the direction of propagation (cf. Fig. 6, second column).

It should also be noted that the total force of the magnetic
field (the black dashed and solid line in Fig. 6) at the level of the
three satellites is identical between the torus with a tilt of ω =
45◦ and the torus with an opposite tilt of ω = −45◦. However, the
distribution of the magnetic field is different, as are the dominant
components. Even with tilt, the transition from a virtual satellite
offset by an angle ϕ = 10◦ relative to the direction of propagation
to a virtual satellite offset by an angle ϕ = −10◦ only changes the
sign of the component Bx.

Finally, in all configurations, the maximum reached by the
total magnetic field is always higher in the Soloviev model than
in the mMT model. In the latter, B0 is the maximum at the mag-
netic axis, whereas in the Soloviev solution, B can reach approx-

imately 1.7 × B0 close to the boundary hole. However, this max-
imum depends on the parameter αS .

In conclusion, the magnetic field theoretically presents com-
plex profiles that depend on the chosen model, its geometry, its
tilt, and also the measurement point. Therefore, we can expect
different profiles in EUHFORIA between the two models as well
(cf. Sect. 4.2).

4.2. Modelled profiles in EUHFORIA

4.2.1. Numerical set-up

For all the simulations we conducted with EUHFORIA for the
present paper, the solar wind was reconstructed from the GONG
magnetogram obtained at 01:04 UT on November 4, 2015. This
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date was chosen arbitrarily to illustrate the potential use of EU-
HFORIA. Hence, as mentioned in Sect. 1, we are not trying to
model the CMEs that occurred near this date, but we are inter-
ested in how the thermodynamic and magnetic profiles obtained
during the propagation of the CME in the solar wind vary de-
pending on the initial parameters.

The mesh used is uniform in all directions with an angular
resolution of 4◦ in the latitudinal and 2◦ for the longitudinal di-
rections and 256 cells in the radial direction. This resolution is
similar to that used by Maharana et al. (2022). Convergence tests
were carried out by doubling the number of cells in all three spa-
tial directions, but this did not change our main results while
drastically increasing the computation time.

Before studying the impact of different parameters, we car-
ried out a series of simulations that will be used as a reference
in the following sections. In these simulations, the center of the
CME evolves from 12:04 PM on November 11 and from the ini-
tial position Ol (td = 6.5 R⊙, θi = 81◦, ϕi = 0◦) with a radial
speed of 600 km/s. The torus has a minor radius a = 5 R⊙, a
major radius R⊙, and a null tilt ω = 0. For the Soloviev solu-
tion, the triangularity is τ = 0.5 and the elongation σ = 1. Thus,
the geometric properties are identical to the tori presented in the
previous section (cf. Sect. 4.1). We chose this elongation and
triangularity because they allow a comparable cross section be-
tween the mMT and Soloviev models while maintaining a closed
ψ = 1 isocontour (cf. Sect. 2.2).

At the points of intersection between the inner boundary
of EUHFORIA and the CME (cf. Sect. 3.2), the injected tem-
perature is constant at 0.8 MK. The density is also constant at
n0 = 1 × 10−17 kg m−3. As explained in Sect. 4.5, using both a
constant density and temperature results in a constant pressure
within the torus. In fact, this contradicts the linear pressure pro-
file we specified to obtain the Soloviev solution (Soloviev 1975).
However, we have deliberately chosen to violate this assumption
(cf. Sect. 4.5 for more details) and use here only the magnetic
distribution of the Soloviev equilibrium.

According to Fig. 6, for the same value of B0, the magnetic
field strength is higher in the Soloviev solution than in the mMT
model. Additionally, due to differing magnetic field distributions
and slightly different geometries, the two CME models used do
not have the same magnetic flux. Bearing this in mind, we still
decided to use the same initial magnetic field strength, B0, in
both models, in order to align as closely as possible with the
same initial parameters.

Finally, the simulations were run on the wICE cluster of the
Vlaams Supercomputer Centrum, a Belgian institution specializ-
ing in high-performance computing1. They have utilized 4 nodes
of this supercomputer, with 36 tasks per node, implying a total
of 144 parallel processes. Additionally, each CPU allocated to
this simulation has 2 GB of memory.

4.2.2. References cases

According to the initial magnetic field and the geometrical pa-
rameters outlined earlier, Fig. 7 illustrates the evolution of speed,
density, magnetic field, and plasma beta (β) at Earth in EUHFO-
RIA for various CME configurations. We simulated three CMEs
using the Soloviev solution with differing αS (αS = 1, −1, and
10). Additionally, we modeled two CMEs with the mMT solu-
tion with Cα = 1 and −1, respectively.

In Fig. 7, we observe that using either the mMT or the
Soloviev solution as the CME model results in notably differ-

1 http://www.vscentrum.be
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Fig. 7: Magnetic and thermodynamic profiles as function of time
obtained at Earth using EUHFORIA with the two CME mod-
els. Top to bottom : speed, density, total magnetic field strength,
Bx, By, Bz components in GSE coordinates, and plasma beta (β
in log scale). The solid lines correspond to simulations where
the CME is based on the mMT solution, while the dashed lines
are obtained from simulations with the Soloviev solution as
CME model. The green vertical lines mark the presumed sheath
boundaries in the mMT simulation with Cα = 1.

ent thermodynamic and magnetic profiles. Specifically, although
the CMEs have the same initial speed and the same initial mag-
netic field strength, B0, the speed obtained at Earth is higher
in simulations with a Soloviev CME than with a mMT CME.
For example, the CME computed from the Soloviev model with
αS = 1 reaches a maximum speed that is approximately 9%
higher than the mMT CME with Cα = 1. Consequently, the
shock arrival time is dependent on the chosen CME model. Addi-
tionally, the Soloviev CMEs also demonstrate a higher magnetic
field strength, |B|, than the mMT CMEs, as anticipated from the
theoretical profiles (cf. Fig. 6). This suggests that the speed of
the CME is not solely related to the initially imposed speed but
also to the initial magnetic field strength (cf. Sect. 4.3).

At the very end of the simulation, after November 8 in Fig. 7,
the speed increases in the two fastest simulations. This increase
is a numerical artifact arising from the solver’s challenges in
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(a) mMT CME with n0 = 1 × 10−17 kg m−3; 4 November 2015 at 23:02 (b) mMT CME with n0 = 1 × 10−17 kg m−3; 6 November 2015 at 14:03

(c) Soloviev CME with n0 = 1 × 10−17 kg m−3; 4 November 2015 at
23:03

(d) Soloviev CME with n0 = 1 × 10−17 kg m−3; 6 November 2015 at
14:03

(e) mMT CME with n0 = 1 × 10−16 kg m−3; 4 November 2015 at 23:02 (f) mMT CME with n0 = 1 × 10−16 kg m−3; 6 November 2015 at 14:03

(g) Soloviev CME with n0 = 1 × 10−16 kg m−3; 4 November 2015 at
23:03

(h) Soloviev CME with n0 = 1 × 10−16 kg m−3; 6 November 2015 at
14:03

Fig. 8: Visualization of the longitudinal magnetic field component in the EUHFORIA heliosphere domain. For both CME models,
two initial mass densities were used: n0 = 1 × 10−16 kg m−3 (panels a and b for the mMT CME model and panels c and d for the
Soloviev CME model) and n0 = 1 × 10−16 kg m−3 (panels e and f for the mMT CME model and panels g and h for the Soloviev
CME model). The geometrical, magnetic, and thermodynamic parameters of the CMEs are described in Sect. 4.2.1. The left panels
(a, c, e, g) show the evolution of the longitudinal field, Blon, on March 4 while the right panels (b, d, f, h) show the simulation on
November 6. Each panel is divided into an equatorial cross section, a meridional cross section passing through the Sun and the Earth,
and a Mercator projection at 0.1 AU from the Sun. The visualization displays the positions of the different planets in the simulation
domain, the location of the current sheet, and the interplanetary magnetic field connecting the Sun and the planets, obtained from
Parker spirals.

managing steep speed gradients as detailed in Sect. 4.2 of Linan
et al. (2023). This can be partially mitigated by enhancing the
spatial resolution.

As discussed in Sect. 4.5, even if the CMEs are inserted
with the same density, the peak density measured at Earth dif-
fers in various simulations. The temporal evolution of the pa-
rameter β also depends on the CME model used. However, for
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(a) mMT CME with n0 = 1 × 10−17 kg m−3; 4 November 2015 at 23:02 (b) mMT CME with n0 = 1 × 10−17 kg m−3; 6 November 2015 at 14:03

(c) Soloviev CME with n0 = 1 × 10−17 kg m−3; 4 November 2015 at
23:03

(d) Soloviev CME with n0 = 1 × 10−17 kg m−3; 6 November 2015 at
14:03

(e) mMT CME with n0 = 1 × 10−16 kg m−3; 4 November 2015 at 23:02 (f) mMT CME with n0 = 1 × 10−16 kg m−3; 6 November 2015 at 14:03

(g) Soloviev CME with n0 = 1 × 10−16 kg m−3; 4 November 2015 at
23:03

(h) Soloviev CME with n0 = 1 × 10−16 kg m−3; 6 November 2015 at
14:03

Fig. 9: Same as Fig. 8 but for the co-latitudinal magnetic field, Bclt.

all CMEs, an increase in the parameter β is observed at the mo-
ment of arrival at Earth, followed by a decrease to values lower
than those of the solar wind before the event. The Soloviev CME
with αS = 10 exhibits a distinct evolution from other cases, as
there is a second increase in the parameter β a few hours after
the first increase, which might indicate the passage of the back
part of the CME or some perturbation in the wake of the CME.
Except for this case, the profile of β is consistent with real in
situ measurements on Earth. Indeed, Regnault et al. (2020), by
performing superposed epoch analyzes of 20 years of ACE data,
found that during an active period of the solar cycle, the param-

eter β increases in the sheath but is lower than before the event
during the traversal of the magnetic ejecta.

Considering the magnetic field profiles in Fig. 7, the results
align with the theoretical profiles presented in Sect. 6, suggest-
ing that they are influenced by the specific CME model imple-
mented. All CME models feature a non-zero Bx component, im-
plying that Earth is not perfectly in the CME propagation direc-
tion (cf. Fig. 6). However, its contribution is minor compared to
the By and Bz components, whose trends vary from one CME to
another.

To explain the trend of the By component, Fig. 8 shows the
distribution of the longitudinal magnetic field Blon at two dif-
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ferent times for the CME derived from the mMT solution with
positive chirality (Figs. 8a and 8b) and from the Soloviev solu-
tion (Figs. 8c and 8d). The longitudinal magnetic field Blon in
the EUHFORIA coordinate system is directly related to the By
component in the geocentric solar ecliptic system (By = −Blon).
Initially (cf. Fig. 8a), Blon is positive at the front part of the CME
and negative at the back in the mMT model. For the Soloviev
CME model with α = 1 (cf. Fig. 8c), the Blon distribution is
almost similar but with opposite signs, as anticipated by the the-
oretical profiles. We can also note that the longitudinal field in
the torus hole is slightly positive in the mMT solution and nega-
tive in the Soloviev solution. The magnetic field within the torus
closely resembles that of the CME front part. We suggest that
it is a consequence of the solver ensuring the magnetic field’s
solenoidality and absence of significant gradients.

Upon the arrival of the magnetic ejecta at Earth (Figs. 8b and
8d), the torus expanded in all directions following a self-similar
expansion. The initial toroidal geometry is no longer discernible.
Furthermore, ahead of the front part of the CME derived from
the mMT model, we can see a thin region where the longitudinal
field is negative. Since the longitudinal field of the CME is pos-
itive in the front part of the CME (cf. Fig. 6), we associate this
negative field with the presence of a sheath that develops as the
CME expands (Siscoe & Odstrcil 2008).

With respect to the different time profiles, we suggest a tran-
sition between the sheath and the magnetic ejecta at approxi-
mately 2015-11-06T19:00, (cf. the vertical green line in Fig. 7)
for the mMT simulation with Cα = 1 (the full red curve). In this
simulation, the passage through the sheath is characterized by
an increase in the By-component. On the contrary, the passage
through the magnetic ejecta is marked by an extended duration,
where By remains negative. These two distinct structures result
in two main peaks in the total magnetic field strength, |B|. How-
ever, for the Soloviev CME cases, we observe mainly an increase
in both the By-component and |B|. Since the longitudinal field in
the front part of the CME is negative, there is no sign change in
the By-component in this case. Consequently, the presence of a
sheath is not as evident as in the mMT CME. We suggest that the
rise in plasma β could indicate the passage through a thin sheath
(Masías-Meza et al. 2016). However, solely based on the thermo-
dynamic and magnetic profiles shown in Fig. 7, it is not feasible
to pinpoint the exact time of the transition between the sheath
and the magnetic ejecta in the Soloviev simulations. It is also
worth noting that determining this boundary can be complicated
due to magnetic reconnection occurring at various points along
the ME, which smooth the transition between the different mag-
netic structures, as discussed by (Romashets & Vandas 2003).
Moreover, the sheath forms due to turbulence which is not in-
cluded in the simulation model. Further studies beyond the scope
of this work are thus necessary to gain a better understanding of
the development and characteristics of sheaths in EUHFORIA.
The primary concern is that in EUHFORIA, the sheath only de-
velops after the CME injection at 0.1 AU. By not considering
the interactions between the solar wind and the CME closer to
the Sun, the size and properties of the sheath can deviate signif-
icantly from expectations, potentially leading to inconsistencies
when compared to in-situ measurements at L1.

Finally, based on the theoretical profiles (cf. Fig. 6), we ex-
pected to see a significant variation of the By field at the sim-
ulation end, indicating the passage of the torus’s back. In the-
ory, this contribution should be antisymmetric with respect to the
torus front (i.e., having the same amplitude but with the opposite
sign). The back of the torus, characterized by a positive longitu-
dinal field in the Soloviev case, is visible in Fig. 8d. However, its

amplitude is so weak that it is not detectable in the time evolution
of the component By in Fig. 7.

Figure 9 shows the evolution of the colatitudinal magnetic
field, Bclt, for the same two CMEs. In the EUHFORIA coordi-
nate system, Bclt equals −Bz in GSE. Initially (cf. Figs. 9a and
9c), we distinguish the injected torus through the inner bound-
ary, with a change in the sign of the Bz component as predicted
by the theoretical profiles (cf. Fig. 6). Like Blon, the magnetic
field within the torus hole follows the trend of the last point of
the CME injected before it. Later in the propagation (cf. Figs. 9b
and 9d), the inversion line in the front part is clearly visible in
both cases. As a consequence of this magnetic field distribution,
the time evolution of the Bz component presents a significant
change in sign. However, as with the By component, the tempo-
ral profile of Bz does not allow us to distinguish the influence of
the back part of the CME (cf. Fig. 7). Further analysis is neces-
sary to understand the exact causes of erosion and/or dispersion
of the back part.

Theoretically, the sign of the Bz component is controlled by
the sign of chirality, i.e., the sign of Cα or αS . In EUHFORIA,
changing the sign of chirality indeed reverses the profile of Bz
(cf. Fig. 7). However, we also notice that chirality influences the
amplitude of the different components, particularly in the simu-
lations with an mMT CME. For example, the maximum of the
total magnetic field strength, |B|, is 13.4 nt for the mMT CME
with Cα = 1, while |B| reaches only 9.0 nt for the mMT CME
with Cα = −1. This leads us to infer that the distribution of the
magnetic field affects the nature of the interactions with the am-
bient solar wind, thus influencing the predicted profiles.

Finally, as expected, increasing the αS parameter in the sim-
ulations with the Soloviev solution allows for a more longitudi-
nal field. Therefore, in the case of the CME with αS = 10, the
predominant magnetic contribution is the By component. In the
forthcoming sections, we will focus exclusively on CMEs with
αS = 1 to facilitate comparisons with CMEs derived from the
mMT solution, which show a substantial contribution from the
Bz component.

4.3. Impact of the initial velocity

As outlined in Sect. 3.2, the center of the torus moves in a purely
radial direction at each time step, according to the following
equation:

td(t) = td(0) + vr0t (24)

where td(t) denotes the distance from the domain’s origin at time
t, and vr0 represents the initial radial speed. Consequently, the
torus experiences a translation in the direction of vector OOl (cf.
Fig. 5).

At EUHFORIA’s inner boundary, the solar wind speed is al-
tered to model the CME’s passage. There are two primary strate-
gies to set the injected velocity. The first strategy is to compute
the velocity at each point on the torus cross-section, consider-
ing its translation and the imposed radial velocity at the center.
Therefore, each point in the torus injected at the boundary has a
unique velocity, embodied by a uniform motion. This approach
is used in the spheromak model (Verbeke et al. 2019). The sec-
ond strategy models a self-similar evolution at the boundary, as
demonstrated in the FRi3D model (Maharana et al. 2022). At
0.1 AU, all intersection points between the torus and the EUH-
FORIA boundary have only a purely radial speed, equivalent to
vr0.

The numerical implementation accommodates both meth-
ods. However, numerous tests have revealed that simulations ex-
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Fig. 10: Same as Fig. 7. The only difference between the different
cases computed from the same CME model is the initial radial
speed. For both CME solution, the initial speed is vr0 = 300
km/s, vr0 = 600 km/s and vr0 = 900 km/s.

hibit greater stability when using self-similar evolution, as op-
posed to configurations where each point can have poloidal and
toroidal speeds. In the latter scenario, the injected CME is more
likely to expand unnaturally upon entering the simulation do-
main, in turn making the simulation unstable. Therefore, in this
work, we consider cases where the injected speed at the bound-
ary is purely radial.

Figure 10 shows the impact of the initial radial speed, vr0, on
the profile obtained in EUHFORIA. The geometrical and ther-
modynamic properties of the injected tori are identical to the
reference cases presented in the previous section (cf. Sect. 4.2.2)
with Cα = 1 for mMT and αS = 1 for Soloviev models. Only the
initial speed varies from 400 km/s to 1000 km/s.

As observed in Fig. 10, a higher initial speed results in a
higher shock speed at the time of arrival at Earth. A higher speed,
i.e., vr0 = 1000 km/s, results in a stronger shock, and thus a
slightly more abrupt increase in velocity compared to slower
cases. However, the maximum speed reached is in all cases lower
than the injected speed, indicating that the magnetic structure
slows down during its propagation. This deceleration may be

caused by a drag force acting on the CME by the surrounding
solar wind (cf. Sect. 4.4).

In Fig. 10, the amplitude of the density, magnetic pro-
files, and plasma β differs according to the initial speed of the
CME. The higher the latter, the higher/lower the local mini-
mums/maximums. This result is consistent with the in situ mea-
surement of the ACE spacecraft. Indeed, by comparing a set of
fast CMEs and a set of slow CMEs, Masías-Meza et al. (2016)
found that the median value of |B| at Earth is higher in the high-
speed group than in the slower group (Regnault et al. 2020, cf.
also). In EUHFORIA, one of the possible reasons for the dif-
ference in amplitudes is that, depending on the initial speed, the
Earth does not cross the CME at the same location. In Figs. 8 and
9, for example, one can see that the longitudinal and colatitudi-
nal fields are not uniformly distributed in the simulation. Thus, a
change in the impact position can result in a modification of the
amplitude of the different quantities (e.g Lepping et al. 1990).

Furthermore, the time profiles in Fig. 10 seem to indicate
substantial compression of the magnetic structure against the
strong shock in the cases where vr0 = 1000 km/s. In EUHFO-
RIA, the torus hole does not have the same speed as the torus
itself. When the radial speed is high, the back of the torus arrives
faster in the domain and catches up more quickly with the front
of the torus. The back part of the torus, having had less time to
expand, finds itself compressed between the surrounding solar
wind and the back. As a result of this compression, the maxi-
mum and minimum local values reached by the Bx, By, and Bz
components at the front of the CME are higher when the initial
speed is increased.

The sheath, delineated by the first bump of |B| and By in the
mMT CMEs, is also more compressed when vr0 = 1000 km/s
due to the fast-moving magnetic ejecta from behind. In contrast,
in slow CMEs, the magnetic field and plasma have enough time
to approach a near-pressure balance. As a result, an expansion of
the sheath can be expected to mirror the trend followed by the
CME (Démoulin & Dasso 2009).

The trends of the magnetic field components are also im-
pacted by the change in initial speed (cf. Fig. 10). For the Bx
component, there are some differences between the various cases
because the magnetic structure is not traversed at exactly the
same position at 1 AU. The most significant difference is related
to the temporal evolution of By. In the fastest cases, i.e., with
vr0 = 1000 km/s, we see a positive bump in the mMT CME and
a negative one in the Soloviev CME at the end of the magnetic
ejecta traverse. These bumps are not observed with the slower
CMEs (i.e., with vr0 = 400 km/s and vr0 = 600 km/s). We con-
clude that these new trends are a trace of the back of the torus,
which was characterized by a positive By in the mMT model and
a negative By in the Soloviev solution (cf. Fig. 6).

According to the theoretical profiles (cf. Fig. 6), a change
in the sign of the Bz component is expected in the back part of
the CME. However, this change in sign occurs only at the very
end of the CME. Therefore, we suggest that this part of the CME
does not cover a sufficiently large region to be clearly perceptible
in the Bz profile and that it is eroded by the interaction with the
solar wind in the wake of the front part of the CME.

To circumvent issues of unnatural magnetic field compres-
sion and potential inaccuracies in predictions, CMEs might be
better modeled using a half-torus, i.e. by taking only the front
part of the torus into account. In practical terms, this involves
injecting only half of the toroidal CME model by halting its pas-
sage across the EUHFORIA boundary when the center of the
torus reaches 0.1 AU. This approach, which will be explored in
a second paper, is employed by Singh et al. (2020) who simu-
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lated the 12 July 2012 event by introducing half of a spheromak
into a realistic background solar wind. Contrary to a full torus,
the injected CME geometry then closely resembles a flux rope
featuring a curved front with two legs. However, it is worth not-
ing that in Singh et al. (2020), the CME is initially superimposed
onto the solar wind rather than being gradually introduced into
the domain via the inner boundary.

4.4. Impact of the initial magnetic field strength
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Fig. 11: Same as Fig. 7. The only difference between the dif-
ferent CMEs is the initial magnetic field strength B0. For CMEs
computed from the Turner solution, B0 is equal to 5 × 10−7 T,
1 × 10−6 T and 3 × 10−6 T; while it is 1 × 10−7 T, 2 × 10−7 T and
6 × 10−7 T in the Soloviev cases.

To modify the amplitude of the magnetic field profiles, one
possibility is to increase the magnetic field B0, and consequently
the magnetic flux. We used the same geometry as our reference
CMEs (cf. Sect. 4.3) and performed simulations with a weaker
magnetic flux using a magnetic field that is half as strong as in
our reference cases i.e., B0 = 5×10−7 T. We also ran simulations
with a magnetic field three times larger, i.e., B0 = 3 × 10−6 T.

The first significant difference among the simulations is the
computation time. The reference simulations require 23 minutes
and 24 seconds for the mMT case and 37 minutes and 39 seconds

for the Soloviev one, utilizing the cluster described in Sect. 4.2.1.
The Soloviev CME, despite having almost the same geometry,
magnetic, and kinetic properties, thus requires more computation
time when B0 equals 1 × 10−6 T. Since the equations governing
the two models are not identical, the time required to calculate
them numerically can also vary.

Furthermore, the computation time is intrinsically related to
the Courant-Friedrichs-Lewy (CFL) condition, which ensures
the stability of the numerical method. Given that the Soloviev
CME has slightly more intense temporal profiles than those ob-
served with the mMT CME, it is inferred that more significant
gradients exist within the numerical domain. These pronounced
gradients can result in swift variations in the domain, increasing
the effective propagation speed of disturbances. To maintain sta-
bility according to the CFL condition, a rise in the propagation
speed leads to a decrease in the time step size. Consequently, a
smaller time step requires more steps to cover an equivalent time
interval, thus extending the overall computational duration.

The reduction of the value of B0 by a factor 2 decreases the
computation time to 15 minutes and 19 seconds for the mMT
CME and to 13 minutes and 34 seconds for the Soloviev CME.
Since the field B0 is only a constant used to scale the magnetic
field obtained in both CME models, it has no influence on the
calculation time of the CME properties during its injection at
0.1 AU. Therefore, if changing the value of B0 affects the sim-
ulation time, it is because the resolution of the MHD equations
requires more or less time, depending on the amplitude of the
magnetic field, once the CME has entered the domain.

Indeed, increasing B0 requires more computational re-
sources, leading to a considerable increase in computation time.
It becomes 27 minutes and 12 seconds for Soloviev and 4 hours
and 14 minutes for mMT. In the latter cases, the extended sim-
ulation time indicates the solver’s difficulty in converging when
the gradients between the CME’s magnetic field and the solar
wind’s properties are significantly high at the inner boundary.

Examining the thermodynamic and magnetic profiles in
Fig. 11, we observe that the larger the magnetic field B0, the
higher the speed. Pal et al. (2018), by studying a set of 30
CMEs, also established a positive correlation between their mag-
netic field strength and their velocity, as determined from white-
light images at 10 R⊙. They found that, statistically, CMEs
with large B0 expand faster than CMEs with a lower magnetic
field strength. This is consistent with our observations. However,
their statistical analysis did not definitively determine whether
this speed difference is a result of a higher ejection speed influ-
enced by the initial magnetic field strength during the eruption
or whether it can also be attributed to physical processes during
propagation. In our simulations, the latter scenario is illustrated,
as our CMEs are all inserted at 21.5 R⊙ with the same initial
velocity.

Finally, the speed at Earth depends not only on the initial
speed (as discussed in Sect. 4.3), but also on the magnetic prop-
erties of the model. This phenomenon has also been observed in
other numerical simulations. For example, by studying the prop-
agation of different flux ropes in the corona, Linan et al. (2023)
discovered that the maximum speed of the CME at 0.1 AU is di-
rectly proportional to the initial magnetic field strength (see also
Regnault et al. 2023).

The influence of the magnetic field on the propagation speed
stems from the balance of forces acting on the CME, which can
be described by the following equation:
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F = m
d2R
dt2 (25)

= FLorentz + Fdrag, (26)

where F is the total force, m the CME mass, t the time, and R
is the position of the center of mass. The expanding CME expe-
riences two main forces, the first being the Lorentz force FLorentz
(e.g., Chen & Kunkel 2010; Sachdeva et al. 2015), which is pro-
portional to J × B where J is the current density. This force al-
lows for the radial expansion of the CME. The second,Fdrag is
the drag force that tends to restrain the CME, explaining why it
gradually slows down during propagation (Chen & Kunkel 2010;
Subramanian et al. 2012; Sachdeva et al. 2015, 2017). Increasing
the magnetic field B0 alters the balance between these two forces
by strengthening the Lorentz force, resulting in the acceleration
of the CME. It is also important to note that the expansion of
the CME depends not only on its initial velocity and magnetic
properties but also on the characteristics of the background so-
lar wind, particularly through the drag force. For instance, by
examining a sample of more than a hundred ICMEs, Vršnak &
Žic (2007) suggested a linear least squares fit between the Sun-
Earth transit time of interplanetary coronal mass ejections and
both their speeds and the solar wind velocity.

Increasing the initial magnetic field B0 (cf. Fig. 11) logically
increases the maximum amplitude reached by the total magnetic
field |B|. However, in these cases, the maximum magnetic field
is weaker than the initial magnetic field B0. This means that the
magnetic field carried by the CME decreases during its propaga-
tion through the heliosphere (Leitner et al. 2007; Liu et al. 2005;
Winslow et al. 2015).

The increase in B0 also modifies the trend of |B| (cf. Fig. 11).
For the CMEs computed from the mMT solution, we see two
distinct local maxima in the cases where B0 = 5 × 10−7 T and
B0 = 1×10−6 T, while there is just a slight change in the slope of
the magnetic field increase when B0 = 3 × 10−6 T. This change
is related to the transition between the sheath and the magnetic
ejecta (cf. Sect. 4.2.2). As explained in Sect. 4.3, increasing the
speed leads to compression of the sheath. This compression is
also visible in the profile of plasma β, which is broader in the
cases where the initial magnetic field is the lowest.

In both models, the trends of the components By, Bz are not
significantly impacted by changes in the initial magnetic field
(cf. Fig. 11). Only the amplitude and width of the profiles are
modified. In the extreme case where B0 = 3 × 10−6 T in the
mMT model, the Bx component follows the same trend as the
By component, which was not discernible with a weaker initial
magnetic field. As the speed is higher than in other cases, the
Earth does not cross at the front of the CME, resulting in a sig-
nificant Bx component as observed in the theoretical profiles (cf.
Fig. 6). However, at each moment, the value of the Bx field re-
mains lower than those of the components By and Bz.

It is also worth noting that even though the CMEs with a
magnetic field strength of B0 exhibit speeds close to those ob-
tained in the previous section, where the CMEs were inserted
with an initial speed of vr0 = 1000 km/s (cf. Fig. 10), the vari-
ous profiles do not display the same characteristics. Especially,
all the profiles with B0 = 3 × 10−6 T are broad, in contrast to
the compression of profiles observed when vr0 = 1000 km/s in
Fig. 10. Furthermore, in Sect. 4.3, the presence of a bump in the
By component is mentioned, indicating the traversal of the back
part of the torus when vr0 = 1000 km/s. We suggest that these
features are not observed when B0 = 3 × 10−6, since the inser-
tion of the torus still occurs at the speed of vr0 = 1000 km/s.

The acceleration of the CME happens gradually during its prop-
agation. Additionally, due to the high magnetic field and the pre-
dominance of the Lorentz forces, the front part of the torus is
more free to expand spatially and is no longer compressed be-
tween the shock and the back part. Finally, in Fig. 11, it is also
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Fig. 12: Same as Fig. 7. The only difference between the different
cases computed from the same CME model is the initial mass
density, n0. For both CME solution, the initial mass density is
n0 = 1 × 10−18 kg m−3, n0 = 1 × 10−17 kg m−3 and n0 = 1 ×
10−16 kg m−3.

seen that in both models, increasing the initial field leads to a
decrease in the maximum density measured at the Earth’s level.
This observation will be explained in the following section (cf.
Sect. 4.5).

4.5. Impact of the initial mass density

The density and temperature of the solar wind at EUHFORIA’s
inner boundary were adjusted to model a CME’s transit. The
newly determined density and temperature are uniform at all in-
tersection points, in line with the CME models already imple-
mented in EUHFORIA (e.g., Scolini et al. 2019).

Under the ideal MHD paradigm, upon which the solver is
based, imposing a constant density and temperature results in
a constant pressure within the torus. However, to achieve the
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(a) Soloviev CME with n0 = 1 × 10−18 kg m−3 (b) mMT CME with n0 = 1 × 10−18 kg m−3

(c) Soloviev CME with n0 = 1 × 10−17 kg m−3 (d) mMT CME with n0 = 1 × 10−17 kg m−3

(e) Soloviev CME with n0 = 1 × 10−16 kg m−3 (f) mMT CME with n0 = 1 × 10−16 kg m−3

Fig. 13: Distribution of scaled mass density at the moment of arrival at Earth as a function of the initial CME density, n0, and
the CME model used. The right panels show simulations with the mMT CME model, while the left panels show simulations
with the Soloviev CME model. Three different initial mass densities were used, from top to bottom: n0 = 1 × 10−18 kg m−3,
n0 = 1 × 10−17 kg m−3 and n0 = 1 × 10−16 kg m−3. The different legends related to the EUHFORIA vizualisation tool are described
in Fig. 8.

Soloviev equilibrium derived from the Grad-Shafranov equation,
the pressure profile is assumed to be linear (cf. Sect. 2.2). De-
spite this, we chose to adopt constant density and temperature
to facilitate numerical computation and comparison between the
two CME models employed in our study. Moreover, even if we
insert a CME in perfect equilibrium, the equilibrium will be im-
mediately broken upon insertion anyway because the external
environment changes drastically.

Figure 12 shows the different thermodynamic and magnetic
profiles obtained in EUHFORIA using three different initial
mass density : n0 = 1 × 10−18 kg m−3, n0 = 1 × 10−17 kg m−3,
and n0 = 1 × 10−16 kg m−3. In this figure, it is apparent that all
profiles are affected by the change in density.

As mentioned earlier (cf. Sect. 4.4), the total magnetic field
of the CME decreases during its propagation. Similarly, due to
the expansion of the CME, the density also decreases (Lugaz
et al. 2005). Furthermore, when the density is high, specifically
n0 = 1 × 10−16 kg m−3, the inertia of the plasma inside the CME
counteracts both magnetic expansion and dissipation. At the mo-
ment of impact with Earth (cf. Figs. 13e and 13f), the CME
is characterized by a global large, compact magnetic structure
with high density and magnetic field. In Figs. 13e and 13f, in the

meridional cross-section, we can notably distinguish several re-
gions of high intensity corresponding to the sheath, the front part
of the torus, the torus hole, and the rear of the torus. These differ-
ent regions have "pancake" shapes, resulting from the pressure
gradients between the CME and the ambient solar wind (Riley
& Crooker 2004). Moreover, we can add that since the magnetic
field is high within the torus, so is the Lorentz force, leading to
a significant velocity (cf. Sect. 4.3).

Conversely, when the density is lower, i.e., n0 = 1 ×
10−18 kg m−3 (cf. Figs. 13a, 13b), the CME undergoes over-
expansion after its insertion into the domain, leading to a sig-
nificant decrease in both density and magnetic field. As a result,
as illustrated in Figure 12, the amplitude of the magnetic field,
density, and velocity profiles is higher in CMEs with a density of
1×10−18 kg m−3 compared to CMEs with lower initial mass den-
sities. These trends are also detailed in Maharana et al. (2022),
who obtain similar results by varying the initial density of the
FRi3D CME model in EUHFORIA.

Altering the initial density of the CME also leads to a change
in the distribution of the longitudinal magnetic field (cf. Figs. 9f
and 9h) and the colatitudinal magnetic field (cf. Figs. 9f and 9h).
This results in a modification of the trends of By and Bz, as shown
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in Fig. 12. Specifically, a prolonged phase where By is positive in
the mMT profile and negative in the Soloviev profile is observed
towards the end of the magnetic ejecta when the initial density is
high, i.e., n0 = 1 × 10−16 kg m−3. As mentioned in Sect. 4.3, and
according to the theoretical profile (cf. Fig. 6), this corresponds
to the passage through the rear of the torus.

In simulations with the CMEs having the highest initial den-
sities, i.e., n0 = 1×10−16 kg m−3, the shape of the density profile
also reflects the clear traversal of different magnetic structures
composing the different parts of the torus as shown in the two
dips in plasma beta in Fig. 12 (7 Nov and 8 Nov).

Finally, looking at the density distribution in Fig. 13, it is
also worth noting that in all the simulations, the maximum den-
sity is located at the nose of the CME. Therefore, if Earth were
to traverse the flank of the CME, the density encountered would
be lower than that if it had passed through the front part. Since
the impact position depends on the speed of the CME, the ampli-
tude of the density profile obtained varies according to the initial
speed and magnetic field imposed (cf. Figs. 10 and 11).

4.6. Impact of major and minor radii

The torus must begin its traversal of the boundary just after the
insertion time. In other words, before the insertion time, there are
no intersection points between the CME and the inner boundary.
To ensure this, the following equation must be satisfied:

td + a + R0 = 21.5 R⊙. (27)

Therefore, the size of the CME is limited as its maximum value,
a + R0 = 21.5 R⊙.

Figure 14 shows the time evolution profiles obtained in EU-
HFORIA for CMEs with varying minor radii a. In these in-
stances, the major radius is fixed at R0 = 10 R⊙. Consequently,
by modifying the minor radius, we have also adjusted the initial
distance from the center of the torus to the center of the domain,
i.e., td, according to Eq. 27.

As the minor radius increases, so does the spatial size of the
CME. Therefore, the larger a, the wider the profiles obtained in
Fig. 14 will be. On the other hand, increasing the minor radius
without altering the initial magnetic field B0 results in a rise in
magnetic flux. Therefore, the magnetic profiles for the case of
a = 9 R⊙ are comparable to those obtained when B0 = 3×10−6 T
in Sect. 4.4. As previously described, the amplitude of the var-
ious magnetic profiles and the speed of the CME increase with
the minor radius. However, the computation time also increases.
It goes from 23 minutes and 24 seconds for the reference mMT
CME with a = 5 R⊙ to 1 hour and 11 minutes for the mMT
CME with a = 9 R⊙. The simulation using a Soloviev model
with a = 9 R⊙ requires approximately three times the computa-
tion time as the reference simulation with a = 5 R⊙.

All different CMEs shown in Fig. 14 have the same initial
density n0. As the minor radius increases, so does the volume of
the torus and, hence, the total mass of the CME injected across
the boundary. Therefore, the maximum of the obtained density
profile is higher for a = 9 R⊙ than for a = 3 R⊙, as described in
Sect. 4.5. However, it should be recalled that the density profile’s
amplitude depends on the impact position between the CME and
Earth.

Finally, altering the torus geometry, for example, by adjust-
ing the minor radius, changes the magnetic and thermodynamic
properties of the CME and thus the resulting profiles, as de-
scribed in previous sections. It is important to note that, nu-
merically, the solver (i.e., EUHFORIA) allows the use of a mi-
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Fig. 14: Same as Fig. 14. The only difference between the differ-
ent CMEs is the minor radius, a = 3 R⊙, a = 5 R⊙ and a = 9 R⊙.
The major radius is fixed to R0 = 10 R⊙

nor radius close to the major radius, i.e., R0/a ≈ 1. Theoreti-
cally, the magnetic field is force-free only for large aspect ratios
(R0/a ≫ 1). Therefore, we can conclude that the force-free as-
sumption is not a limiting criterion and that it is not necessary
in EUHFORIA to restrict the range of minor and major radii to
satisfy R0/a ≫ 1.

5. Conclusion

In order to introduce new CME models in EUHFORIA to fill the
gaps in the models currently used, we implemented two mag-
netic configurations with a toroidal geometry. The first CME
model is derived from the modified Miller-Turner (mMT) model
(cf. Sect. 2.1). The second corresponds to the Soloviev equilib-
rium, an analytical solution to the Grad-Shafranov equation (cf.
Sect. 2.2). Although both models possess a toroidal geometry,
the Soloviev CME model offers more free parameters. Indeed,
unlike the mMT model, where the twist is fixed, it is possible
to modify the magnetic helicity of the Soloviev solution. On the
other hand, the mMT model has a circular cross section, while
the poloidal aspect can be modified in the Soloviev CME model
by adjusting the triangularity and the elongation (cf. Sect. 2.2.2).
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The distribution of the magnetic field within the torus is also dif-
ferent in both models, which justifies the implementation of two
configurations (cf. Sect. 4.1).

After presenting these differences analytically, we show the
numerical implementation in EUHFORIA (cf. Sect. 3.2). This
implementation is identical in both models. The torus crosses
the inner boundary of EUHFORIA with an initially fixed ra-
dial speed. At each intersection point between the torus and the
boundary, the speed, magnetic field, density, and temperature of
the solar wind are modified to model the passage of the CME.

To illustrate the numerical implementation, we performed a
series of simulations in which the CME is injected into a realistic
solar wind background derived from the GONG magnetogram
obtained at 01:04 UT on November 4, 2015. We examined the
impact of different initial parameters on the magnetic and ther-
modynamic profiles at Earth in EUHFORIA. From these pro-
files, our main findings were as follows:

– Both models are stable and can be used in EUHFORIA. The
magnetic profiles obtained at Earth are consistent with the
distribution of the magnetic field injected across the bound-
ary.

– Once within the domain, the CME radially expands with a
speed dependent on the radial velocity of the torus center
during torus insertion. When the initial velocity is high (ap-
proximately 1000 km/s), we observed a compression of the
magnetic structure between the back of the torus and the
shock. This leads to narrow profiles. Examining the distri-
bution of the magnetic field, we noticed the development of
a sheath ahead of the mMT CME, the thickness of which also
depends on the speed of the magnetic ejecta.

– Increasing the magnetic field leads to an increase in the
Lorentz force, and therefore increasing the speed of the
CME. This also allows us to obtain broad profiles with high
amplitudes. However, the computation time is directly re-
lated to the intensity of the magnetic field.

– In both models, the CME expansion is directly related to the
initial mass density of the torus. When the density is too
low (here n0 = 1 × 10−18 kg m−3), the CME experiences
over-expansion, leading to dispersion of both density and
magnetic field. In contrast, when the density is high (e.g.,
n0 = 1× 10−16 kg m−3), the torus maintains a compact struc-
ture. It is then possible to discern the influence of the back of
the torus on the magnetic profiles.

– The amplitude of the local peaks and the duration of the mag-
netic disturbances can be modified by adjusting the geome-
try of the torus. The greater the minor radius, the greater the
injected magnetic flux and total mass. Therefore, the ampli-
tude of the magnetic field and density can be altered with-
out changing the initial magnetic field strength and the initial
mass density.

Finally, EUHFORIA enables the use of these two new
toroidal models. Despite their relatively simple analytical for-
mulation, it is possible to achieve complex profiles, depending
not only on the initial parameters of the CME but also on the
impact position with Earth.

Now, the next step is to use these two new toroidal CME
models to predict the geoeffectiveness of real CME events. Sim-
ilar to Scolini et al. (2019), the properties of the torus, such as its
size, magnetic flux, and speed, must be deduced from various ob-
servations to ensure the most realistic simulation possible, thus
providing the most accurate predictions (cf. also Maharana et al.
2022). This kind of study will allow us to conclude which model

is most suitable for modeling real events. In fact, our study alone
cannot determine if one model is superior to the other, since both
models provide different magnetic profiles and react almost sim-
ilarly to changes in the initial parameters. However, we suggest
that both the mMT and the Soloviev models can provide profiles
that closely align with observations, especially since both mod-
els exhibit a change in the Bz profile sign, as can be measured by
an in-situ satellite at 1 AU (e.g., Regnault et al. 2020).

Moreover, by successively launching two spheromak CMEs
into the heliospheric models EUHFORIA and PLUTO, respec-
tively, Scolini et al. (2020) and Koehn et al. (2022) found that
the interaction of two moderate CMEs can result in an intense
geomagnetic storm. Therefore, it would be insightful to study
within EUHFORIA how the thermodynamic and magnetic pro-
files at Earth are affected by the interaction of multiple CMEs
modeled by our mMT and/or Soloviev models.

It may also be interesting to compare the performance of
these two models with previously implemented models such as
spheromak (Verbeke et al. 2019) and FRi3D (Maharana et al.
2022). Regarding the geometry, given that coronal mass ejec-
tions are often approximated as locally cylindrical objects with
circular cross sections (Savani et al. 2011), the morphology of
these two new toroidal models is likely to be closer to observa-
tions than the spheromak model, which is spherical. Moreover,
the geometry of our toroidal models can be further refined us-
ing the radial stretching approach proposed by Gibson & Low
(1998). This enhancement would make them even more closely
resembling a realistic flux rope. Finally, we note that the com-
putation time required for the two toroidal CMEs (on the order
of a few minutes for our reference runs) is closer to that of the
spheromak model than that of FRi3D. Indeed, the latter model,
with standard initial parameters and a numerical configuration
similar to ours, requires between 7 and 10 hours for the calcula-
tion, while the spheromak requires between several tens of min-
utes to a couple of hours (Maharana et al. 2022).

We have found, however, that increasing the magnetic flux
can cause a massive increase in computation cost because more
time steps are needed to capture the time-dependent evolution
on the grid. To speed up the computation, it could be worthwhile
to implement these two CME models in the new inner helio-
spheric simulation ICARUS (Verbeke et al. 2022; Baratashvili
et al. 2022). Unlike EUHFORIA, ICARUS is based on MPI-
AMRVAC (Keppens et al. 2003, 2012; Keppens et al. 2023;
Xia et al. 2018), which uses advanced numerical techniques and
radial grid stretching together with adaptive mesh refinement.
Baratashvili et al. (2022) found that for the same spheromak
CME evolving in the same solar wind, ICARUS is up to 17 times
faster than EUHFORIA. Furthermore, the adaptive mesh refine-
ment in MPI-AMRVAC could allow the capture of finer details
in the simulation that may be missed when using a uniform grid.
We plan to validate the implementation of these two new models
using observation data in a second paper.

To conclude, the current implementation of the toroidal
CMEs in EUHFORIA has laid the groundwork for additional
toroidal CME modeling. By addressing all the intricacies spe-
cific to a toroidal CME structure, such as determining the inser-
tion points, we have paved the way for a simplified adaptation
process. This foundation makes it significantly easier to incorpo-
rate other toroidal CME models, such as the Tsuji solution (Tsuji
1991) or the modified Titov-Démoulin CME model (Titov & Dé-
moulin 1999; Titov et al. 2014). These can now be implemented
by simply adjusting the magnetic field within the torus.
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Appendix A: Magnetic fields in the global
coordinates

Appendix A.1: Miller-Turner transformation system

According to Sect. 2.1, the magnetic field for the modified
Miller-Turner CME within the torus is defined in the local
(ρl, ϕl, θl) curved cylindrical coordinates. In order to implement
in EUHFORIA, we first derive the magnetic fields in the local
spherical system (eρ, eθ, eϕ) where ρ is the radius, θ is the co-
latitude, and ϕ is the longitude. The two set of coordinates are
related to each other by the relations :

ρl =

√
ρ2 + R2

0 − 2ρR0 sin θ (A.1)

θl =

arcsin ρ cos θ
ρ
, if ρ sin θ − R0 ≥ 0

π − arcsin ρ cos θ
ρ
, otherwise.

(A.2)

The magnetic field in the local spherical system can be written
as :

Bρ = sin(θl + θ)Bρl + cos(θl + θ)Bθl (A.3)
Bϕ = Bϕl (A.4)
Bθ = cos(θl + θ)Bρl − sin(θl + θ)Bθl (A.5)

In a similar way, the magnetic field can also be obtained in the
local Cartesian system (eXl, eYl, eZl) defined by the coordinates
(Xl,Yl,Zl) :

BXl =
BρXl√

X2
l + Y2

l + Z2
l

+
BθXlZl√

X2
l + Y2

l + Z2
l

√
X2

l + Y2
l

−
BϕYl√
X2

l + Y2
l

(A.6)

BYl =
BρYl√

X2
l + Y2

l + Z2
l

+
BθYlZl√

X2
l + Y2

l + Z2
l

√
X2

l + Y2
l

+
BϕXl√
X2

l + Y2
l

(A.7)

BZl =
BρZl√

X2
l + Y2

l + Z2
l

−
Bθ(X2

l + Y2
l )√

X2
l + Y2

l + Z2
l

√
X2

l + Y2
l

(A.8)

with

Xl = ρ sin θ cos ϕ (A.9)
Yl = ρ sin θ sin ϕ (A.10)
Zl = ρ cos θ (A.11)

It is worth noting that we use the magnetic field in the spherical
coordinate system as an intermediate step rather than directly
transforming the magnetic field from the local cylindrical coor-
dinate system to the Cartesian coordinate system.

In order to implement the magnetic field in EUHFORIA, we
need to switch from the local Cartesian system (eXl, eYl, eZl) to
the global Cartesian system (eX , eY , eZ) of the simulation. The
center of the torus in the EUHFORIA system is the point Ol at
ρ = td, θ = θl, and ϕ = ϕl. The original coordinate system is first
translated such as :

xtr = x − td sin θl cos ϕl (A.12)
ytr = y − td sin θl sin ϕl (A.13)
ztr = z − td cos θl, (A.14)

where (xtr, ytr, ztr) define the translated system. Then to obtain
the local Cartesian system, the new coordinate system is rotated,
so that the new X-axis corresponds to the direction of propaga-
tion OOl, where O is the center of the EUHFORIA domain (cf.
Fig. 5).

X
Y
Z

 =
 sin θl 0 cos θl

0 1 0
− cos θl 0 sin θl


 cos ϕl sin ϕl 0
− sin ϕl cos ϕl 0

0 0 1


xtr
ytr
ztr

 (A.15)

Finally, to apply a tilt defined by an angle ω, the resulting system
can be rotated along the new X-axis such as :Xrot
Yrot
Zrot

 =
1 0 0
0 cosω − sinω
0 sinω cosω


X
Y
Z,

 (A.16)

with (Xrot, Yrot, Zrot) define the final coordinate system.

Appendix A.2: Soloviev transformation system

Similarly to the modified Miller-Turner CME model, the
Soloviev solution is obtained in a local coordinate system, which
differs from the coordinate system used in EUHFORIA. There-
fore, a coordinate transformation is necessary. The Soloviev
CME model is defined in a specific cylindrical coordinate sys-
tem, defined by the unit vectors eRl , eϕl with Rl the radius, Zl
the vertical axis, and ϕl the longitudinal angle. These cylindri-
cal coordinates can be expressed in terms of the local spherical
coordinates (ρ, θ, ϕ):

Rl =

√
(ρ sin θ cos ϕ)2 + (ρ sin θ sin ϕ)2 (A.17)

Zl = ρ cos θ (A.18)
ϕl = −ϕ. (A.19)

The three components of the magnetic field in the local spherical
coordinate system can be obtained from the magnetic field in the
cylindrical coordinate system :

Bρ = sin θBRl + cosθBZl (A.20)
Bθ = cos θBRl − sinθBZl (A.21)
Bϕ = −Bϕl (A.22)

Once the components of the magnetic field are obtained in
the local spherical coordinate system, they allow access to the
vectors in the local Cartesian coordinate system before undergo-
ing a translation and rotations to obtain the different vectors in
the global system used in EUHFORIA. The transformation from
the components Bρ, Bθ, Bϕ to the vector in the final EUHFORIA
coordinate system is described in Sect. A.1.
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